1673-159X

CN 51-1686/N

基于RGB-D数据的改进PVN3D的6D位姿估计算法

6D Pose Estimation Algorithm Based on RGB-D Data and Improved PVN3D

  • 摘要: 在计算机视觉与机器人技术领域,6D位姿估计是一项重要任务。针对现有的基于RGB-D图像的6D位姿估计方法难以全面利用特征信息的问题,提出一种改进的6D位姿估计算法。该算法结合了YOLOv8n-seg与ResNet-UNet框架的优势,以有效提取并利用RGB图像和点云数据中的多模态信息。在PVN3D网络的基础上,通过YOLOv8n-seg模块实现RGB图像的语义分割,以捕获更加细致的场景特征;引入ResNet-UNet,通过特征级联与多尺度信息融合,增强模型的检测精度,并通过对损失函数进行定制化优化,进一步提升整体性能。在LineMOD数据集上的实验结果表明,其平均精度提升了2%,所提算法是有效的。

     

    Abstract: In the fields of computer vision and robotics, 6D pose estimation is an important task. Given that existing methods for 6D pose estimation based on RGB-D images struggle to fully utilize feature information, this paper proposes an improved 6D pose estimation algorithm. The algorithm leverages the advantages of the YOLOv8n-seg and ResNet-UNet frameworks to effectively extract and utilize multimodal information from both RGB images and point cloud data. Semantic segmentation of RGB images is achieved using the YOLOv8n-seg module based on the PVN3D network, this method captures more detailed scene features. Additionally, the introduction of ResNet-UNet enhances detection accuracy through feature cascading and multiscale information fusion. Customized optimization of the loss function further improves overall performance. Experimental results show that on the LineMOD dataset, the mean precision is improved by 2%, validating the effectiveness of the proposed improved algorithm.

     

/

返回文章
返回