一类带吸引项的抛物型方程在记忆边界条件下解的性质
The Properties of a Parabolic Equation with Absorb Term and Memory Boundary Condition
-
摘要: 研究带非线性吸引项的抛物型方程ut=Δu-um在具有时间积分的Neumann边界条件 \frac\partial u\partial v = u^q\int_0^t u^p 下解的性质,其中p>0, q>0,m≥1。文章首先证明比较原理成立;其次采用不动点定理建立解的局部存在性;最后通过上下解技巧、积分估计等方法得到方程存在爆破解的充分条件。Abstract: In this paper, we studied the following parabolic equation with absorb term ut=Δu-um(x, t), x∈Ω, t>0 under the Neumann boundary condition \frac\partial u\partial v = u^q\int_0^t u^p , where p>0, q>0, m≥1. We proved a comparison principle, and then established the local existence of solutions via a fixed point argument. Finally we obtained the sufficient condition for the existence of blowup solutions by using the super-sub solution technique and integral methods.