1672-8505

CN 51-1675/C

生成式人工智能使用在先作品数据的适法路径、梗阻与制度完善

Legal Paths, Obstacles, and Institutional Improvements for the Use of Prior Work Data in Generative Artificial Intelligence

  • 摘要: 《生成式人工智能服务管理暂行办法》和《生成式人工智能服务安全基本要求》(TC260-003)对生成式人工智能使用在先作品数据提出了合法性要求。基于海量在先作品数据训练,生成式人工智能的生成行为是在先作品表达与用户思想融合的创作,其过程中容易引发著作权侵权风险。基于适度降低生成式人工智能服务提供者的授权成本、均衡多元社会主体利益和合理控制算法作品的市场替代性考量,合理使用制度具有法定许可制度无法比拟的优势,成为生成式人工智能合法使用在先作品数据的首选路径。囿于《著作权法》第二十四条第一款前十二项排斥营利性主体的“商业性目的”使用、合理使用制度对“三步检验法”的维护等适法梗阻,文章建议修订《著作权法实施条例》,突破营利性主体规定,将GenAI服务提供者纳入合理使用的主体范畴;将“标准必要”授权方式作为生成式人工智能“商业性目的”使用的前置性程序;从平衡利益保护和促进技术发展、机器学习对单部作品的影响和算法作品对人类作品的整体替代性等角度重新释义“三步检验法”。

     

    Abstract: The Interim Measures for the Management of Generative Artificial Intelligence Services and Basic Requirements for the Security of Generative Artificial Intelligence Services(TC260-003) establish legal frameworks for using prior work data in generative AI. Generative AI behavior, trained on massive prior work data, integrates prior creative expression with user input, creating copyright infringement risks. Considering the need to reduce authorization costs for generative AI providers, balance multi-stakeholder interests, and control algorithmic works' market substitutability, fair use demonstrates superior advantages over statutory licensing, emerging as the preferred legal pathway for prior work data utilization in generative AI. Due to restrictions imposed by the "three-step test" in article 24(1) of the Copyright Law, which obstructs commercial applications and excludes for-profit entities from fair use under its first twelve provisions, the article suggests breaking through the Copyright Law Implementation Regulations to permit fair use by for-profit generative AI providers; Adopting "standard-essential" licensing for commercial generative AI applications; Redefining the "three-step test" through dual perspectives of interest-balancing and technology-promotion, machine learning's impact on individual works, and algorithmic works' substitutability for human creations.

     

/

返回文章
返回